

American Institute of Aeronautics and Astronautics

1

Model-Based Software Quality Assurance with the
Architecture Analysis and Design Language

Peter Feiler* and David P. Gluch†
Software Engineering Institute, Pittsburgh, PA, 15213-2612

Kathryn Anne Weiss‡
Jet Propulsion Laboratory, Pasadena, CA, 91109

and

Kurt Woodham§
L-3 Communications, Fairmont, WV, 26554

Model-based software quality assurance (MB-SQA) provides a rigorous framework for
the verification and validation of software systems through the systematic modeling and
analysis of formal architecture representations. This paper describes the results of applying
an MB-SQA practice framework that utilizes the Architecture Analysis and Design
Language (AADL) to JPL’s Mission Data System (MDS) reference architecture. The MDS
is a unified reference architecture for space mission flight, ground, and test systems. In the
case study, the AADL assurance practice framework and several AADL-based analyses were
applied to the evaluation of critical quality attributes of the MDS reference architecture as
well as an MDS adaptation for the control of a heated camera. The results of the case study
demonstrate the utility of the practice framework and the AADL-based analyses in
addressing (1) the modeling of key MDS architectural themes and (2) quality assurance with
respect to performance, particularly flow latency.

Nomenclature
AADL = Architecture Analysis and Design Language
FOM = Figure of Merit
IV&V = Independent Verification and Validation
MB-SQA = Model-Based Software Quality Assurance
MDS = Mission Data System
OSATE = Open Source AADL Tool Environment
SQA = Software Quality Assurance
V&V = Verification and Validation

I. Introduction
hroughout software engineering literature, software quality assurance (SQA) typically refers to monitoring the
software development process to ensure that the project is adhering to established development standards and

procedures. In other words, the high quality (read “quality” as an adjective) of a software system is assured through
the rigorous enforcement of standards and procedures.

However, SQA can also refer to ensuring that the software system has certain qualities (here, read “quality” as a
noun), or, as referred to in the software architecture community, quality attributes. These quality attributes are

* Senior Member of the Technical Staff, 4500 Fifth Avenue.
† Visiting Scientist from CSE Department at the Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd.,
Daytona Beach, FL 32114-3900.
‡ Flight Software Engineer, Systems and Software Division, 4800 Oak Grove Drive M/S 301-225, AIAA Member.
§ Chief Engineer, Enterprise IT Services Division, 100 University Drive.

T

American Institute of Aeronautics and Astronautics

2

indirectly measurable software system properties, such as maintainability, performance, and safety, desired by
system stakeholders. In order to ensure that a software system meets the quality attribute requirements set forth by
the system stakeholders, software engineers must perform software quality assurance.

This type of SQA is a critical, yet difficult task for embedded software systems, because (1) quality attributes
need to be built into a system from the beginning and (2) quality attributes are indirectly measurable.

First, quality attributes must be engineered into the software system through the employment of specific tactics,
such as architecture styles, design patterns, or reference architectures.** These tactics are selected to address a
particular or several quality attribute(s) requirements and contribute to the overall architectural concept. Second,
quality attributes are indirectly measurable. For example, there is no single measurement for “performance,”
because performance is highly coupled to the functional requirements of the software system, the characteristics of
the system within which the software is embedded, and the non-functional needs of the system stakeholders.
Therefore, Figures of Merit, or FOMs, are usually defined, such as data transport latency, task execution time, and
latency jitter, that quantify the quality attribute, in this case performance, with respect to this system context. These
FOMs provide software engineers with an indication of performance and system stakeholders with assurance that
their concerns are being addressed.

The architectural concept and quality attribute FOMs are documented as part of the software architecture and
specified in an “architecture description document.” Traditionally, the views that comprise an architecture
description do not contain formal models that can be analyzed with respect to these FOMs. The lack of rigorously
specified software architecture description documents makes it extremely difficult for quality assurance personnel to
determine whether or not an architecture has been constructed such that stakeholder quality concerns are addressed.

These problems can be addressed through taking a model-based approach to SQA. Model-based software
quality assurance (MB-SQA) is the application of model-based engineering techniques (i.e., the use of formal
abstractions and analyzable representations to perform typical engineering tasks) to the verification and validation of
software architectures with respect to quality attributes. Model-based engineering techniques utilize structured,
graphical, implementation-independent notational systems for producing unambiguous documentation of system
requirements and design, thereby providing the foundation for formal and effective software quality assurance.
Using MB-SQA for both verification and validation (V&V) and independent verification and validation (IV&V),
which are often employed at each phase of the embedded software system development lifecycle, provides software
engineers with the capability to develop a thorough understanding of and insight into the critical characteristics of a
system that are vital to its correct operation.

This paper proposes an approach to MB-SQA that leverages the Society of Automotive Engineers (SAE)
Architecture Analysis and Design Language (AADL) and Open Source AADL Tool Environment (OSATE). It is
proposed that these tools and associated practice framework can be employed in both the V&V and IV&V efforts of
embedded software systems development to help ensure the achievement of stakeholder quality requirements. This
formal modeling language and supporting toolset were applied to representing and analyzing an adaptation of the Jet
Propulsion Laboratory (JPL) Mission Data System (MDS) reference architecture for real-time embedded control
systems, to evaluate the effectiveness and ease of applying this approach to a real system.

Section 2 provides background on the AADL, the AADL assurance practice framework, and examples of the
types of quality attribute analyses that can be performed by using AADL and the AADL assurance practice
framework. Section 3 presents an overview of the MDS reference architecture and observations on how MDS
architectural themes relate to both AADL modeling techniques and model-based engineering of software systems in
general. Section 4 presents the case study used to illustrate the AADL assurance practice framework as well as the
models that were developed for that case study. The results of performing various analyses on these models are also
presented. Finally, Section 5 presents conclusions and future work.

** An architecture style is a form or pattern of design with a shared vocabulary of design idioms and rules for using
them.1 A design pattern is a commonly recurring structure of communicating components that solves a general
design problem within a particular context. A reference architecture an architectural pattern, or set of patterns,
partially or completely instantiated, designed and proven for use in particular business and technical contexts,
together with supporting artifacts to enable their use.2

American Institute of Aeronautics and Astronautics

3

II. BACKGROUND
This section provides necessary background information for understanding how the AADL is useful in

performing MB-SQA and to understand the context for its application to the MDS reference architecture. First, a
brief overview of the AADL is presented. Then, a summary of the AADL assurance practice framework is outlined.
Finally, MDS and its architecture concepts are introduced.

A. AADL
The SAE AADL standard provides formal modeling concepts for the description and analysis of software system

architectures in terms of distinct components and their interactions.3 The AADL includes software, hardware, and
system component abstractions to (1) specify and analyze real-time embedded systems, complex systems-of-
systems, and specialized performance capability systems and (2) map software onto computational hardware
elements. The AADL is especially effective for model-based analysis and specification of complex real-time
embedded systems.4

Within the AADL, a component is characterized by its identity (a unique name and runtime essence), possible
interfaces with other components, distinguishing properties (critical characteristics of a component within its
architectural context), and subcomponents and their interactions. In addition to interfaces and internal structural
elements, other abstractions can be defined for component and system architectures. For example, abstract flows
can be identified and associated with specific components and interconnections to perform flow analyses. These
additional elements can be included through core AADL language capabilities and the specification of a
supplemental annex language.

The component abstractions of the AADL are separated into the three categories listed below.†† Figure 1 shows
the AADL graphical representations of these component abstractions.
Application Software:
• Thread: active component that can execute

concurrently and be organized into thread groups
• Thread Group: component abstraction for

logically organizing thread, data, and thread
group components within a process

• Process: protected address space whose
boundaries are enforced at runtime

• Data: data types and static data in source text
• Subprogram: concepts such as call-return and

calls-on methods (modeled using a subprogram
component that represents a callable piece of
source code)

Execution Platform (Hardware):
• Processor: schedules and executes threads
• Memory: stores code and data
• Device: represents sensors, actuators, or other

components that interface with or are part of the
physical environment

• Bus: interconnects processors, memory, and
devices

Composite:
• System: design elements that enable the integration of other components into distinct units within the

architecture; they can consist of other systems as well as of software or hardware components
AADL also includes several component interactions, which can be separated into the four categories listed

below. Figure 2 shows the AADL graphical representations of these component interactions.
Port Connections:
• Data Port: interfaces for typed state data transmission among components without queuing
• Event Port: interfaces for the communication of events raised by subprograms, threads, processors, or

devices that may be queued

†† Throughout the remainder of this paper, AADL component abstractions are indicated by capitalization. AADL
component instances in models are indicated by italics.

Figure 1. AADL Component Abstractions

American Institute of Aeronautics and Astronautics

4

• Event Data Port: interfaces for message
transmission with queuing

• Port Groups: a connection for a collection of ports
or other port groups

Component Access Connections:
• Provides: indicates that a component provides

access to a data or bus component contained
within it

• Requires: indicates that a component requires
access to a shared data component or bus
component that is external to it

Subprogram Call Connections:
• indicates the control flow of a call from the caller

to the callee – both local and remote
Parameter Connections:
• indicates the flow of data from ports to

subprogram parameters and between parameters of
different subprogram calls

The AADL standard includes runtime semantics for data exchange and control mechanisms including message
passing, event passing, synchronized access to shared components, thread scheduling protocols, timing
requirements, and remote procedure calls. In addition, dynamic reconfiguration of run-time architectures can be
specified using operational modes and mode transitions within the context of both software and hardware
components. For a full description of the AADL constructs please refer to Ref. 5.

B. AADL Assurance Practice Framework
The AADL assurance practice framework provides a foundation of processes, artifacts, methods, and tools used

to perform MB-SQA during both V&V and IV&V activities. Figure 3 presents an overview of the AADL assurance
practice framework. For a more detailed description of the AADL assurance practice framework please refer to Ref.
6.

As illustrated in Figure 3, the AADL assurance practice framework has three main activities: Focus, Build, and
Analyze. These activities form an iterative process with continuous feedback flowing from one activity to the next.

The Focus activity determines the components of the embedded software system that will be modeled and
analyzed for quality assurance. In many situations, it may not be desirable or feasible to develop full, detailed

Figure 2. AADL Component Interactions

Figure 3. AADL Assurance Practice Framework

American Institute of Aeronautics and Astronautics

5

models of the entire software system architecture. Therefore, the Focus activity is driven by the critical issues
identified by the system stakeholders (i.e., high risk quality requirements) and the analysis methods used to probe
these issues. The outputs of the Focus activity are a well-defined Analysis Plan and any necessary modifications to
the V&V or IV&V Plan.

The principal objective of the Build activity is to develop AADL models of the software system elements
identified during the Focus activity. A model is a full or partial representation of a software system element
sufficiently detailed to support one or more focused analyses. The initial steps in the Build activity involve
referencing appropriate Analysis Guidelines (part of the AADL Analysis Repository) that define specific methods
and identify tools for developing and analyzing models. The output of the Build activity is the set of AADL models.

The Analyze activity involves conducting detailed assessments of targeted aspects of the embedded software
system using the models created during the Build activity.7 Different assessments often require different models.
For example, a reliability assessment requires the use of a stochastic process model, while a scheduling assessment
requires the use of a timing model. Analysis Guidelines establish the requisite methods and steps for various types
of analysis. A unified architecture analysis model for each software system is maintained as part of the Analyze
activity to ensure that the various analysis models accurately represent the same architecture. Utilizing the
extensibility of the AADL notation, this unified architecture analysis model is annotated with information relevant
for different types of analysis, so that analysis models can be easily derived from one unified model of the software
system, thereby reducing the analysis model validation step to the examination of the filters that generate the
analysis models.

The Analyze activity leverages OSATE, the Open Source AADL Tool Environment.8 OSATE is an extensible
tool environment based on Eclipse that provides textual and graphical AADL editing support, semantic checking of
AADL models, and translation of those models into XMI. Several analysis tools are available that interface with
OSATE. Some of these, such as security and end-to-end latency analysis tools, operate directly on an instance of
the AADL model. Others interface with AADL models through filters that map relevant information from the
AADL model into representations specific to the analysis tool, supporting activities such as network loading or fault
tree analyses.

Finally, it should be noted that the AADL assurance practice framework advocates the use of an AADL Analysis
Repository, which consists of reference materials that support modeling and analysis for V&V and IV&V. As
shown in Figure 3, the repository consists of Analysis Guidelines, a Component Library, and Custom Property Sets.
Analysis Guidelines provide V&V and IV&V personnel with supporting materials for (1) formulating analysis
strategies, (2) establishing key parameters that should be considered, and (3) identifying specific analysis processes,
methods, and tools for their particular application. These guidelines are organized into viewpoints that address
broad concerns associated with quality and other non-functional attributes of the target system as well as critical
behavioral aspects. The Component Library is a collection of AADL component type and implementation
declarations that can be used to create analysis models for a target system. These components are organized into
hierarchical layers ranging from general components that can be used across an organization to specialized
component variations required for a specific project. The repository’s Custom Property Sets include specialized
properties required for analyses. These properties are integrated into analysis models through a built-in AADL
capability that allows a user to define new properties and property types. Initially, the content of the repository is
general; however, during its use in a project or organizational context, the content of a repository evolves.
Components and properties are added and / or modified, and new analysis techniques and tools are identified.

C. The Mission Data System
The JPL MDS project was initiated in April 1998. The principal project objectives were “to define and develop

an advanced multi-mission architecture for an end-to-end information system for deep-space missions” and “to
address several institutional objectives: earlier collaboration of mission, system and software design; simpler, lower
cost design, test, and operation; customer-controlled complexity; and evolvability to in situ exploration and other
autonomous applications.”9 Figure 4 provides a conceptual diagram of the MDS reference architecture.

MDS is a goal-based system, which is defined as a system in which all actions are directed by goals instead of
command sequences. A goal is a constraint on a state variable over a time interval.10 Types of states include:
dynamics, environment, device status, parameters, resources, data product collections, data management and
transport policies, and externally controlled factors.

In MDS, the hardware adapter receives information about the environment and the hardware itself from the
sensors. These measurements are used as evidence and are passed to a state estimator. The state estimators use the
evidence provided by the hardware adapter and the history of the states to estimate the current state of the system
including an estimate of the uncertainty. Operators express their intent in the form of goals declaring what should

American Institute of Aeronautics and Astronautics

6

happen, as opposed to low-level command
sequences that dictate how the intent is to be
achieved. A Mission Planning and Execution
function then elaborates and schedules these goals
based on the current state of the system as
determined by the state estimator. The state
estimates and elaborated goals are inputs to the
state controllers, which issue appropriate
commands to the hardware to achieve these goals.
More detail on Goal Elaboration, Mission
Planning, and Execution is provided in Ref. 10.

The following subsection provides an
overview of the key MDS architectural themes
that motivate the state- and goal-based control
approach described above. The next section then
provides a mapping between the MDS
architectural themes and constructs and the
approaches in AADL that will be used to model
MDS.

D. MDS Architectural Concepts
The MDS architecture is based on a set of concepts that were developed to meet the needs of real-time embedded

control systems given the unique characteristics of aerospace applications. The MDS architectural concepts include:
• Take an Architectural Approach: Construct subsystems from architectural elements, not the other way

around.
• Ground-to-Flight Migration: Migrate capability from ground to flight, where appropriate, to simplify

operations.
• State and Models are Central: System state and models form the foundation for information processing.
• Explicit Use of Models: Express domain knowledge explicitly in models rather than implicitly in program

logic.
• Goal-Directed Operations: Operate missions via specifications of desired state rather than sequences of

actions.
• Closed-Loop Control: Design for real-time reaction to changes in state rather than for open-loop commands

or Earth-in-the-loop control.
• Resource Management: Resource state usage is projected with models and checked against constraints.
• Separate State Estimation from State Control: For consistency, simplicity and clarity, separate state

estimation logic from control logic.
• Integral Fault Protection: Fault protection must be an integral part of the design, not an add-on.
• Acknowledge State Uncertainty: State estimation must be honest about the evidence; state estimates are not

facts. State values are rarely known with certainty.
• Separate Data Management from Data Transport: Data management duties and structures should be

separated from those of data transport.
• Join Navigation with Attitude Control: Navigation and attitude control must build from a common

mathematical base.
• Instrument the Software: Instrument the software to gain visibility into its operation, not just during testing

but also during operation.
• Upward Compatibility: Design interfaces to accommodate foreseeable advances in technology.
For a deeper description and exploration of these architectural themes, please refer to Ref. 9.

III. Modeling MDS with AADL
In order to effectively model the Mission Data System with AADL, it was necessary first to create a mapping

between the MDS architectural themes and constructs, and the approaches used in AADL. This mapping provides
guidance in developing analysis strategies and approaches, identifying critical issues, and defining specific views
and models for the MDS case study.

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Figure 4. The MDS Reference Architecture

American Institute of Aeronautics and Astronautics

7

Take an Architectural Approach: AADL is an architecture description language for real-time embedded
systems, and therefore enables modeling of component-based systems with fully defined interfaces and interactions
between components.

Ground-to-Flight Migration: AADL supports modeling the migration of capability from ground to flight by
clearly separating the software architecture at the application layer from its deployment on a physical and compute
platform.

State and Models are Central: In MDS, state variable values (estimates) have a single producer and multiple
consumers, and therefore state information flows from a single producer to one or more consumers. Consequently,
state variables could be modeled in AADL as Data components that are accessed by producer and consumer tasks.
In this representation, (1) information flow is reflected in the read and write access properties of the Data
components, and (2) information transfer timing between a producer and consumer is implicit in the execution order
of the producer and consumer tasks.

However, in this work, another modeling strategy was employed. AADL was specifically designed to model
sampled state as signal streams in a closed-loop control system. Therefore, AADL provides Data Ports for
representing the state estimates to be communicated. Furthermore, AADL provides Port connections that are used
to express the flow of state information. Through the use of AADL Data Ports and Port connections, mid-frame
(immediate) and phase-delayed communications can be expressed to ensure deterministic sampling. Deterministic
sampling is important in order to maintain the stability of the control loops.

MDS state variables can thus be represented as the outgoing Data Port of the producer task that is generating the
state estimate. Consumers (state estimators and state controllers) access state variables through Port connections to
their incoming Data Port. Desired communication timing is specified through the connection semantics. By
creating flow specifications of the individual components and the end-to-end system, V&V and IV&V personnel can
annotate the flows with flow-related properties such as latency, data age, data accuracy and precision, and data miss
rates for analysis purposes.

Explicit Use of Models: AADL is a formal language that supports rigorous modeling of systems as software and
hardware components as well as their interactions.

Goal-Directed Operations: Goals in MDS are constraints on state over a time period. AADL supports the
modeling of goals through the use of sublanguage annexes that enable the creation of domain-specific annotations to
the AADL model.

Closed-Loop Control: AADL supports the modeling of closed-loop, flow-oriented architectures through the use
of Data Ports that represent state and connections that represent flow. Deterministic flow is ensured through the use
of mid-frame and phase-delayed connections. In other words, measurements are available through “out” Data Ports
of sensor hardware adapters and are passed to estimators via Data Port connections. Data available to the estimator
mid-frame is expressed by an immediate Data Port connection.

Resource Management: The execution platform components in AADL represent compute platform and physical
resources. User-defined properties enable V&V and IV&V personnel to characterize resource capacities and
resource budgets. The AADL concepts Processor, Memory, Bus, and Device define these resources as abstractions
that include budget-based resource management.

System power consumption can also be modeled in AADL. With respect to MDS, power consumption can be
addressed in two categories: power consumption of (1) the physical plant in the system under control and (2) the
compute platform in the control system. The MDS Mission Planning and Execution function already focuses on
power concerns of the physical plant. If desired, AADL can also capture power requirements of the physical plant
elements through power-related properties on physical components modeled through the AADL Device concept.
AADL can then be used to characterize variations in power requirements through Modes and Mode-specific
Properties and different deployment configurations for performing trades.

The compute platform is represented in AADL as a resource on which the MDS application software is
executed. Specifically, the binding of the hardware adapter software to the underlying compute platform is
explicitly modeled in AADL to determine processor utilization.

Separate State Estimation from State Control: The AADL Package concept allows users to organize and
compartmentalize the modeling space for representing multi-layer, componentized architectures. Consequently,
state estimation can be modeled and packaged separately from the controllers that influence state.

Integral Fault Protection: AADL includes fault handling mechanisms as part of its execution semantics
including Recovery Entry Points for threads, Error Event Ports for communicating with a health monitor, and Modes
to represent various fault tolerant configurations. AADL also has an Error Model Annex extension that permits
users to abstractly characterize fault behavior and fault propagation in support of fault impact and isolation analysis
as well as reliability and fault tree analysis.11

American Institute of Aeronautics and Astronautics

8

Acknowledge State Uncertainty: AADL properties can be used to characterize the data represented in state
variables including uncertainty characteristics.

Separate Data Management from Data Transport: AADL separates the logical flow of information through
Data Ports from its deployment across both ground and flight compute platforms. Furthermore, the management of
data history can be abstracted into the specification of desired data goals with respect to the state variable history
logging and transport.

Join Navigation with Attitude Control: Joining navigation with attitude control is captured in AADL models
through the use of a common set of state data accessed by both navigation and attitude control components.

Instrument the Software: Instrumentation of software can be modeled in AADL through Properties associated
with software model elements. Alternatively, users can define AADL instrumentation patterns associated with
model elements that are elaborated during model instantiation.

Upward Compatibility: AADL semantics allow the partial description of component interfaces so that they can
be specialized within implementations or extensions. Furthermore, Properties on these interfaces can be used to
explicitly capture upward compatibility requirements.

IV. A Case Study
This section presents the results of using the AADL assurance practice framework to perform MB-SQA on the

Mission Data System. First, the MDS reference architecture is modeled. Then, an adaptation of the MDS reference
architecture, namely the control of a heated camera, is modeled. Finally, the MDS adaptation is analyzed with
respect to flow latency, which provides an example of quality assurance with respect to performance in the V&V
and IV&V context. The graphical AADL representations shown throughout this section were developed in OSATE
and are equivalent to the textual AADL representations.

A. MDS Reference Architecture Model
Figure 5 contains an AADL graphical description

generated in OSATE of the MDS reference
architecture. This diagram contains the same
information as Figure 4 albeit a formal instead of
informal representation and at a higher level of
abstraction.

As seen in Figure 5, the AADL model is comprised
of three top-level components, namely the
MDSControlSystem, the MDSSystemUnderControl,
and the MDSComputePlatform. The
MDSControlSystem and the MDSSystemUnderControl
interact with one another by passing sensor
measurements and actuator commands as well as
measurement and command histories. These
interactions are depicted as connections between Port Groups to indicate that there may be a collection of
connections between the two components. The MDSComputePlatform interacts with the MDSSystemUnderControl
through the DeviceBus that provides physical access to the sensors and actuators in the system under control. In
addition, the software components of MDSControlSystem are bound to hardware components of
MDSComputePlatform via a binding Property (not shown in Figure 5).

1. Modeling the Compute Platform
Figure 6 contains a detailed AADL model of the MDSComputePlatform. The MDSComputePlatform may

include the flight system and / or the ground system as well as the connectivity between the two. The
MDSComputePlatform is connected to the MDSSystemUnderControl through the DeviceBus that provides physical
access to the sensors and actuators in the system under control. The MDS hardware adapters are mapped to the
compute platform in a deployment configuration through the use of AADL binding properties.

2. Modeling the System Under Control
The MDSSystemUnderControl consists of the devices and hardware adapters that comprise the system under

control, which are defined when the MDS reference architecture is adapted for a specific system. Depending on the
system being modeled, a single Device may represent the complete system under control. In that case, “out” Data
Ports represent sensors, whose data content are measurements, and “in” Data Ports represent actuators, whose data

Figure 5. MDS Reference Architecture AADL Model

American Institute of Aeronautics and Astronautics

9

content are commands. Each sensor or actuator can
be modeled as a separate Device, including one or
more Data Ports for measurements and / or
commands.

The AADL model of the MDS reference
architecture consists of the hardware adapters,
namely the SensorHardwareAdapters, which are
responsible for converting sensor readings into
measurements, and ActuatorHardwareAdapters,
which are responsible for converting control
commands into actuator commands. Sensor
readings are passed from the physical system to the
hardware adapters in the MDSControlSystem and
control commands are converted by the hardware
adapters and passed to actuators in the physical
system.

Hardware adapters also maintain measurement
and command histories and make them available to
the StateEstimation component of the
MDSControlSystem. For a specific MDS
adaptation, the generic Port Groups shown in these
figures are refined to represent specific sensor
measurements and actuator commands, state
estimates, xgoals, and histories.

3. Modeling the Control System
Figure 7 presents the AADL model of the MDS control system. As depicted in the conceptual view of the MDS

reference architecture shown in Figure 4, the representation in Figure 7 depicts the major components of the
MDSControlSystem, namely state estimation (StateEstimation), state control (StateControl), two components
relating to execution (GoalMonitor and
GoalExecutive), and two components
related to planning (GoalPlanner and
OperatorConsole).

As shown in Figure 7, state estimators
are represented by the StateEstimation
Thread Group and controllers are
represented by the StateControl Thread
Group. Bundling estimators and controllers
as Thread Groups allows the refinement of
each with a set of Threads that represent
individual estimators and controllers.

The Port Group StateEstimatesOut
represents the results of estimation, i.e., the
observed state of the system under control.
This Port Group is refined using Data Ports,
each Data Port representing the current
value of an estimated state variable.
Estimated state variables are used by the
Thread Group StateControl. Individual
state estimators within the StateEstimation
Thread Group may make use of each
others’ state values. The StateEstimation
Thread Group is also responsible for
maintaining a history log of the estimated
states, which is made available through a
separate Port Group EstimateHistoryOut.

Figure 6. MDS Compute Platform

Figure 7. MDS Control System

American Institute of Aeronautics and Astronautics

10

Above the interface with the system under control is the execution layer of the MDS reference architecture,
which consists of the GoalMonitor and the GoalExecutive. The GoalExecutive interprets a goal network, i.e., a
mission plan, and passes executable goals to the controllers of the Thread Group StateControl. The GoalMonitor
compares the state estimation history to the executable goals to determine whether the controllers are able to achieve
the goals or if replanning should be initiated. The executable goals are represented by a Port Group that is refined in
adaptations of the MDS reference architecture.

The GoalPlanner and the OperatorConsole address the planning aspects of the MDS reference architecture. The
GoalPlanner is responsible for producing a goal network and replanning that goal network if the controllers are
unable to achieve the goals within the goal network constraints. The OperatorConsole provides status including
telemetry such as measurement, state estimate, and command histories, and allows for mission planning inputs by
human operators.

4. Model Organization
The AADL Package concept is used to organize the modeling space as

illustrated in Figure 8. All packages that comprise the MDS reference
architecture model are included in one project
(MDS_Reference_Architecture) in OSATE. The Package MDSData
contains all declarations of Port Group types and Data component types.
The Data component types are used in Data Port declarations to specify the
type of data communicated through these Ports.

The Package SystemUnderControl contains the System declaration for
the system under control. The HardwareAdapters Package contains the
Systems representing the sensor adapters and the actuator adapters. The
MDSControlSystem Package contains the MDS control system, while the
components of the MDS control system, i.e., the state estimators, state
controllers, goal executive, goal monitor, and goal planner, are declared in
the ControlSoftware Package. The elements of the compute platform are
declared in the ExecutionHardware Package. Finally, the top-level system
is declared in the CompleteMDSSystem Package.

In addition to the packages, an MDS reference architecture Property Set
is also defined for modeling rate groups. Other Property Sets can be
similarly defined to analyze the MDS reference architecture with respect to
other properties critical to MDS performance.

B. MDS Adaptation Example
In this section, AADL is used to refine the MDS reference architecture model described in the previous section

into an MDS adaptation model. AADL support for model refinement is used to accomplish this task. The MDS
reference architecture is adapted to represent a specific MDS system in a separate OSATE project as seen in Figure
8, thereby enabling the independent development of multiple MDS adaptations. The AADL support for nested
package names enables refinement of the original MDS reference architecture packages into system specific
packages.

Individual components of the MDS reference architecture were refined by making use of the Extends construct.
The Extends construct allows the declaration of a Port Group type, Component type, or Component implementation
in terms of an existing type or implementation‡‡. These declarations refine previously declared features and
subcomponents. The declarations can also be used to add subcomponents or features to the model. Port Group type
extensions were declared to fill in the details of the Port Groups defined in the MDS reference architecture.
Component type extensions were also declared to refine feature classifiers to the adaptation-specific Port Group and
Component classifiers. Finally, component implementation extensions were declared that introduce specific
instances of hardware adapters, estimators, controllers, goal executives, and goal monitors through subcomponent
declarations.

In this case study, the MDS reference architecture is adapted to the temperature control of a camera mounted on
a fixed platform, which is a typical control problem on board a spacecraft.12 A diagram of the major components of
the heated camera system is shown in Figure 9a. In this example, a temperature signal that originates in the
temperature sensor (modeled as an AADL Device) flows through the control system, which controls the actuation of

‡‡ For more information on the distinction between types, implementations, and instances please refer to Ref. 5.

Figure 8. Model Organization

American Institute of Aeronautics and Astronautics

11

the camera heater’s power switch (also modeled as an AADL Device). A conceptual block diagram of the heater
controller with sensors and actuators is shown in Figure 9b.

The camera hardware is modeled in AADL by refining the MDSSystemUnderControl component defined in the
MDS reference architecture. Temperature sensor and heater switches (seen in Figure 9b) are represented as separate

Devices. These Devices are physically
connected to the Device Bus. The devices are
connected to the hardware adapters, one for
each sensor and actuator. These adapters
provide a logical connection to the
MDSControlSystem through the refined
MeasurementsOut and CommandsIn Port
Groups. These Port Groups have been refined
to define the individual Data Ports used for
communicating measurements and commands.

The components of the MDSControlSystem
are also refined for this example. The MDS
reference architecture has Thread Groups that
represent collections of hardware adapters,
estimators, controllers, goal executives, and
goal monitors. Figure 10 shows the Estimator
and Controller Thread Groups of the MDS
reference architecture with Port Group features
defining their interface to other MDS control
system components.

Figure 10. Example MDS Reference Architecture Package

(a)

System
Under
Control

System
Under
Control

Heater 1

Switch 1
Actuator

Switch 1
command

Temperature
measurement

Temperature
Sensor

Switch 2
Actuator

Heater 2

Switch 2
command

PS2

PS1

+

-

Camera

(b)

Figure 9. Fault-Tolerant Heated Camera Control System12

American Institute of Aeronautics and Astronautics

12

In the heated camera example, these
Thread Groups are refined by creating
individual Threads for each component
within the group. For example, in Figure
11 the Estimator Thread Group in the
MDS reference architecture is refined into
TemperatureEstimator,
TemperatureSensorHealthEstimator, and
HeaterSwitchEstimator threads through
defining an estimator.camera Thread
Group implementation that contains
instance declarations for the three
Threads.

For some system components in the
MDS reference architecture, the
refinement into the heated camera
adaptation simply involves refining the
classifiers from the generic classifiers of the reference architecture model to the heated camera system specific
classifiers. This is illustrated in Figure 11 by the refinement of the estimator Port Group features to refer to the
camera-specific Port Group classifiers. These Port Group classifiers are themselves extensions of the Port Group
types in the MDS reference model that add Data Ports specific to the camera example.

Once the adaptation model structure was
completed, it was possible to examine the
information flow through the system. The
information flow in the MDS control system is
shown in Figure 12 as a collaboration diagram.
State variables are read and updated through
access methods. The heater switch controller
takes heater goals as input and produces heater
switch commands. This controller uses the
estimated states of the heater switches to decide
which command to issue. The switch estimator
determines the state of the heater switches. Both
the current and the previous state value may be
used, as shown by the SwitchEstimator accessing
both the current and previous temperature
estimates.

The estimators make use of temperature measurements from the hardware adapters, temperature sensor health
state, and heater switch state. The estimated state is available to other estimators and to controllers through “out”
Data Ports, namely the StateEstimatesOut Port Group. This Port Group was refined for the heated camera example
by creating Data Ports specific to this system. For example, the StateEstimatesOut Port Group is refined to include a
Data Port called Temperature_State. Access to the current value of a state variable is represented by an immediate
Data Port connection, while access to the previous value of a state variable is represented by a delayed Data Port
connection.

C. Flow Latency Analysis
This section presents the results of performing the Analyze activity of the AADL practice framework to the

MDS adaptation example described in the previous section. As previously stated, one of the objectives of using a
MB-SQA approach is to assure that certain quality attribute requirements are being achieved by the software system.
In this example, the figure of merit “flow latency” is used to characterize the quality attribute “performance” for the
heated camera system. This section presents the results of analyzing the heated camera system model with respect
to flow latency, which gives an indication of whether or not performance requirements are being met.

Control systems process signal streams. Often a control algorithm is sensitive to the signal stream
characteristics. These characteristics include the accuracy and precision of the sensor readings, bad or missing
sensor readings, expected changes to successive values of the signal stream, the latency and age of the data in the

Figure 11. Example MDS Adaptation Package

Figure 12. Heated Camera Example Information Flow12

American Institute of Aeronautics and Astronautics

13

signal stream, as well as variation and jitter in latency and age. AADL provides the capability to model end-to-end
flows and to utilize these end-to-end flow specifications to perform end-to-end flow latency analysis.

From a control engineer’s perspective, end-to-end flow latency is comprised of (1) processing latency to perform
the control computation, (2) sampling latency due to over- and under-sampling, and (3) transmission latency of the
signal from the sensor and the signal to the actuator over physical connections. Furthermore, when a control system
is implemented as software, several additional factors contribute to end-to-end flow latency including (1) sharing of
processor and network resources, (2) preemptive scheduling, (3) blocking due to mutually exclusive access to shared
logical resources such as shared data areas, (4) use of partitioned architectures, and (5) rate group optimization.

Processing latency refers to the amount of time it takes to perform a function. For example, the processing
latency of a sensor is the amount of time between the detection of a signal and the corresponding response event or
message from the sensor; in software, the processing latency of a software component refers to the amount of time it
takes to compute the function. This time may be bounded by its worst-case execution time, which is a value often
used in scheduling analysis to determine schedulability.

Sampling latency refers to the time delay that results from a task reading its input and then performing its
computation at a specified rate. The maximum latency contribution due to sampling is the period of the recipient.

Control engineers are concerned with transmission latency over physical connections between the system under
control and the control system. They often do not take into consideration any delays in communication between the
software components in the control system. However, communication protocols contribute to latency as transfer
requests from multiple sources are handled. In some protocols, latency takes the form of queuing delays as data
from multiple producers is queued. In other protocols, latency takes the form of sampling delays as data ready for
transfer must wait until its assigned slot in the protocol schedule is available.

In addition, the runtime architecture of the embedded software has a number of latency contributors. Preemption
latency occurs when tasks share a resource. For example, multiple tasks may execute on the same processor, or
tasks may require exclusive access to a shared data area. Typically, a deadline is specified for tasks to indicate the
latest time since its dispatch by which it is expected to complete its execution. In essence, the deadline represents
the worst-case sum of processing time and preemption time.

Partition latency occurs when different parts of the embedded application execute within different partitions, i.e.,
in different virtual machines on the same processor. Different partitions get different time slots to execute on the
same processor. Communication between partitions is either non-deterministic, which results in latency jitter, or
deterministic and therefore phase-delayed, which increases latency.

Finally, rate group optimization is used to reduce the number of separate threads and context switching between
these threads by placing logical threads with the same rate in the same operating system thread. Consequently, the
execution order of logical threads changes. If the logical threads communicate through shared variables, a change in
the execution order may change what was intended to be mid-frame communication into phase-delayed
communication thereby increasing the latency of the data being communicated.

The SEI has developed a flow latency analysis framework for AADL models that utilizes end-to-end flow
specifications and knowledge about the control application execution.13 This framework consists of a collection of
application threads executing at a given rate and communicating their results via different communication
mechanisms. This implementation of the flow latency analysis capability in OSATE was applied to the MDS
adaptation models of the heated camera
system.

An End-to-End Flow declaration
TemperatureResponse was defined to
represent a signal from the temperature
sensor through the control system to the
switch actuator device. This provides a
measure of the time between the sensing of a
switching threshold temperature and the
reception of a command to turn the heater on
or off by the switch actuator. The path is
defined as an end-to-end flow through the
MDSControlSystem of the heated camera,
originating at the TemperatureSensor Device
within the camera hardware
(MDSSystemUnderControl) and ending in the
HeaterSwitch Device within the camera

Figure 13. The TemperatureResponse Flow through the

Heated Camera Adaptation Model

American Institute of Aeronautics and Astronautics

14

hardware (MDSSystemUnderControl). Figure 13 depicts the application of the TemperatureResponse flow
specification to the MDS adaptation models of the heated camera system.

The flow through the MDSControlSystem has been specified using the “flows” keyword as shown in Figure 11.
A flow specification indicates the flow from a component input to one of its outputs without having to expose or
know its implementation. Flow specifications can have properties such as latency.

In the case of the MDSControlSystem, a component implementation with subcomponents was modeled and is
shown in Figure 7. The component implementation declaration includes a flow implementation, which indicates
how the flow specification is realized through the subcomponents. Figure 13 depicts the realization of the
TemperatureResponse flow specification through the components of the MDSControlSystem. The flow starts with
the sensor reading going to and through (1) the sensor hardware adapters, (2) the state estimators, (3) state control,
(4) the actuator hardware adapters, and (5) finally ends with the actuator command output. The individual flow
specifications have a latency Property associated with them that indicate the latency contributed by the component.

In the adaptation model of the heated camera system, the end-to-end flow declaration TemperatureResponse is
elaborated by expanding the flow specification of the MDSControlSystem by its flow implementation. This
expanded end-to-end flow is then interpreted by the flow latency analysis capability in OSATE. The latency
analyzer calculates the end-to-end latency taking into account latency contributions by the runtime architecture as
well as the computing hardware. It compares the results of this analysis with the expected latency property value of
the end-to-end flow specification. Figure 14 shows how OSATE uses the Eclipse marker mechanism and problem
view to report results to the user. This figure shows two error reports indicating that the calculated end-to-end
latency has exceeded the expected latency.§§

V. Conclusion
Model-based software quality assurance (MB-SQA) provides a rigorous framework for the verification and

validation of software systems through the systematic modeling and analyses of formal architecture representations.
MB-SQA provides V&V and IV&V personnel with the capability of formally demonstrating that the architecture of
their embedded software system meets quality attribute requirements. These quality attribute requirements are
codified as Figures of Merit, or FOMs, which are measurable system properties that give an indication of how well
the architecture addresses a particular quality attribute. This paper specifically addressed the application of the
AADL quality assurance practice framework that utilizes the SAE Architecture Analysis and Design Language and
supporting toolset OSATE for performing MB-SQA on embedded software systems.

This paper described the process of applying the AADL quality assurance practice framework to JPL’s Mission
Data System (MDS) reference architecture. The MDS is a unified reference architecture for space-mission flight,
ground, and test systems. In the case study, the AADL assurance practice framework and several AADL-based
analyses were applied to the evaluation of critical quality attributes of the MDS reference architecture as well as an
MDS adaptation for the control of a heated camera.

As demonstrated in the paper, AADL can be used to effectively model key MDS architectural themes such as
state-based control, the separation of estimation and control and the separation of data management and data
transport, as well as top-level MDS constructs such as state estimators, state controllers, and hardware adapters. The
ability to model these architectural themes and constructs provides the foundation for analyzing the MDS reference

§§ Note that illustrative values were used for this model and the results are not indicative of the results for any
existing MDS implementation.

Figure 14. Flow Latency Analysis Results for the TemperatureResponse Flow

American Institute of Aeronautics and Astronautics

15

architecture as well as adaptations of the MDS with respect to FOMs that give an indication of critical quality
attributes.

The case study described in this paper involved modeling both the MDS reference architecture and an adaptation
of the MDS as applied to the temperature control of a camera mounted on a fixed platform, which is a typical
control problem on board a spacecraft. The quality attribute of interest was performance, and the specific FOM used
to give an indication of performance was flow latency. The models of the reference architecture and adaptation
were analyzed with respect to flow latency in order to ensure that the quality concern of performance was addressed.

It should be noted that these models can also be analyzed with respect to other figures of merit representative of
performance such as scheduling and workloads as well as other quality attributes such as security and reliability.
Future work in MB-SQA using the AADL assurance practice framework aims at exploring these other figures of
merit and quality attributes.

In summary, the results of the case study demonstrate the utility of the practice framework and the AADL-based
analyses in addressing (1) the modeling of key architectural themes for a reference architecture and (2) quality
assurance with respect to performance, particularly flow latency.

Acknowledgments
The work described in this report was funded by the NASA IV&V Facility Software Assurance Research

Program (SARP) task titled “Model-Based Software Assurance with the SAE Architecture Analysis and Design
Language (AADL).” Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. This paper was also created
in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research and development center. Special
thanks go to the Mission Data System team at JPL, especially Matthew Bennett, Mitch Ingham, David Wagner,
Kenny Meyer, and Bob Rasmussen.

References
1Shaw, Mary and David Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, Upper

Saddle River, NJ, 1997.
2IBM Corporation. IBM Rational Unified Process (RUP). 2003.
3Society of Automotive Engineers. “The Architecture Analysis and Design Language (AADL).” Standard AS-5506.

November 2004. Revised Standard AS-5506A. January 2009.
4The Architecture Analysis and Design Language (AADL) Information Site. http://www.aadl.info.
5Feiler, P. H., D. P. Gluch, and J. J. Hudak. “The Architecture Analysis & Design Language (AADL): An Introduction.”

Carnegie Mellon University, Software Engineering Institute Technical Report CMU/SEI-2006-TN-011. Pittsburgh, PA. 2006.
6NASA IV&V Facility. “AADL Practice Framework for Model-Based Analysis: Beta Version.” Project Report of the

NASA Software Assurance Research Program (SARP) “Model-Based Software Assurance with the SAE Architecture Analysis
and Design Language (AADL)." http://sarpresults.ivv.nasa.gov/ViewResearch/21/99.jsp. December 14, 2007.

7Feiler, Peter H., D. P. Gluch, J. J. Hudak, and B. A. Lewis. “Embedded System Architecture Analysis Using SAE AADL.”
Carnegie Mellon University, Software Engineering Institute Technical Report CMU/SEI-2004-TN-005. Pittsburgh, PA. 2004.

8The Open Source AADL Tool Environment (OSATE) for the SAE Architecture Analysis and Design Language (AADL).
http://www.aadl.info.

9Dvorak, Daniel, Robert Rasmussen, Glenn Reeves, and Allan Sacks. “Software Architecture Themes in JPL’s Mission Data
System.” Proceedings of IEEE Aerospace Conference, March 2000.

10Ingham, Michel, Robert Rasmussen, Matthew Bennett, and Alex Moncada. “Engineering Complex Embedded Systems
with State Analysis and the Mission Data System.” AIAA Journal of Aerospace Computing, Information and Communication,
Vol. 2, No. 12, pp-507-536. December 2005.

11Society of Automotive Engineers. “Architecture Analysis and Design Language (AADL) Annex Volume 1.” Standard AS-
5506/1. June 2006.

12Bennett, Matthew, Daniel Dvorak, Greg Horvath, Michel Ingham, Richard Morris, Robert Rasmussen, and David Wagner.
“State Analysis for Software Engineers: Model-Based Systems and Software Engineering.” Jet Propulsion Laboratory,
California Institute of Technology. http://mds.jpl.nasa.gov/public/index.shtml.

13Feiler, P. H. and J. Hansson. “Flow Latency Analysis with the Architecture Analysis and Design Language (AADL): An
Introduction.” Carnegie Mellon University, Software Engineering Institute Technical Report CMU/SEI-2007-TN-010.
Pittsburgh, PA. 2007.

